BP神经网络概念(bp神经网络分类原理)

bp神经网络通俗概论?

BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。

通俗的说,BP神经网络是人工神经网络的BP算法。BP神经网络是应用最广泛的神经网络模型之一。

人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。

BP神经网络三个主要特点?

BP神经网络具有如下三个特点:

(1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接。

(2)BP网络的传递函数必须可微。所以感知器的二值函数不能用,一般采用Sigmoid函数,可分为Log-Sigmoid和Tan-Sigmoid函数。 其中x的范围包含整个实数域,函数值再0~1之间。具体应用时可以增加参数,以控制曲线的位置和形状。

 sigmoid函数可以将输入从负无穷到正无穷的范围映射到(-1,1)和(0,1)之间,具有非线性放大功能。

(3)采用误差反向传播算法(Back-Propagation)进行学习。再BP网络中,数据从输入层经隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络连接权值。

bp神经网络的应用?

bp神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

bp神经网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

bp神经网络的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

bp神经网络模型拓扑结构包括输入层、隐层和输出层。

matlab中的bp神经网络怎么调用?

matlab中调用bp神经网络的指令有newff和sim,用这两个指令即可完成bp神经网络的调用,调用语句格式如下:

net=newff(a,b)

y=sim(net,a)

bp在神经网络中的作用是什么?

BP神经网络是最基础的神经网络,其输出结果采用前向传播,误差采用反向(Back Propagation)传播方式进行。

其作用是模仿人类的神经元激活、传递过程(还记得高中生物的“突触”这个概念嘛)。以三层神经网络为例,BP神经网络含输入层、隐含层、输出层三层结构。输入层接收数据,输出层输出数据,前一层神经元连接到下一层神经元,收集上一层神经元传递来的信息,经过“激活”把值传递给下一层。

bp神经网络如何计算权值和阈值?

首先需要了解BP神经网络是一种多层前馈网络。以看一下在matlab中BP神经网络的训练函数,有梯度下降法traingd,弹性梯度下降法trainrp,自适应lr梯度下降法traingda等。

因为初始值(初始权值和阀值)都在x这个向量中,x(n,1)的长度n为:n=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum

其中inputnum*hiddennum是输入层到隐含层的权值数量,hiddennum是隐含层神经元个数(即隐含层阀值个数),hiddennum*outputnum是隐含层到输出层权值个数,outputnum是输出层神经元个数(即输出层阀值个数)。

结构

BP网络是在输入层与输出层之间增加若干层(一层或多层)神经元,这些神经元称为隐单元,它们与外界没有直接的联系,但其状态的改变,则能影响输入与输出之间的关系,每一层可以有若干个节点。

BP神经网络的计算过程由正向计算过程和反向计算过程组成。正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每~层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各神经元的权值,使得误差信号最小。

终于明白为什么叫bp神经网络?

因为BP神经网络具有任意复杂的模式分类能力和优良的多维函数映射能力,解决了简单感知器不能解决的异或(Exclusive OR,XOR)和一些其他问题。

从结构上讲,BP网络具有输入层、隐藏层和输出层;从本质上讲,BP算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小值。

bp神经网络能干什么?

BP神经网络是一种按照误差反向传播算法训练的多层前馈网络,也是目前应用最广泛的神经网络模型之一。它由信息的正向传播和误差的反向传播两个过程组成。

输入层的神经元负责接受外界发来的各种信息,并将信息传递给中间层神经元,中间隐含层神经元负责将接收到的信息进行处理变换,根据需求处理信息,实际应用中可将中间隐含层设置为一层或者多层隐含层结构,并通过最后一层的隐含层将信息传递到输出层,这个过程就是BP神经网络的正向传播过程。

bp神经网络优缺点?

多层前向BP网络的优点:

网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;

网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;网络具有一定的推广。

缺点:BP算法的学习速度很慢,其原因主要有:由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;

存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。

版权声明