特征向量怎么求?
从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。
矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。
通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。
扩展资料
注意事项
1、当在计算中微子振荡概率时发现,特征向量和特征值的几何本质,其实就是空间矢量的旋转和缩放。而中微子的三个(电子,μ子,τ子),就相当于空间中的三个向量之间的变换。
2、用户只需要列一个简单的方程式,特征向量便可迎刃而解。公式表示只需要通过删除原始矩阵的行和列,创建子矩阵。再将子矩阵和原始矩阵的特征值组合在一起,就可以计算原始矩阵的特征向量。
3、传统的求解特征向量思路,是通过计算特征多项式,然后去求解特征值,再求解齐次线性方程组,最终得出特征向量。
矩阵的特征向量怎么求?
对于特征值λ和特征向量a,得到Aa=aλ
于是把每个特征值和特征向量写在一起
注意对于实对称矩阵不同特征值的特征向量一定正交
得到矩阵P,再求出其逆矩阵P^(-1)
可以解得原矩阵A=PλP^(-1)
设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。
一个矩阵A的特征值可以通过求解方程pA(λ) = 0来得到。 若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。
反过来,代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,因此对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。
扩展资料
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
在A变换的作用下,向量ξ仅仅在尺度上变为原来的λ倍。称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量,当然,其他理论领域也有这一现象。
如何判断特征向量是否正交
对于实对称矩阵不同特征值的特征向量一定正交,根据向量正交的概念,向量相乘为零,特征向量和特征子空间都有一定意义的唯一性,若一个矩阵没有重特征值,特征向量唯一确定,只要可逆矩阵P的列不正交,D是没有重特征值的对角阵,则特征向量不正交。
特征向量怎么求出来的
求特征向量:从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。这样做的意义在于看清一个矩阵在那些方面能产生最大的效果,并根据所产生的每个特征向量(一般研究特征值最大的那几个)进行分类讨论与研究。
怎么求特征向量
求特征向量公式:Ax=cx。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
特征向量和基础解系有啥区别
特征向量是特征值对应齐次方程组的基础解系。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系。基础解系是线性无关的,它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。基础解系并不唯一,不同的基础解系之间必定对应着某种线性关系。
特征值和特征向量都是唯一的吗
特征值和特征向量是线性代数中的重要概念。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值,非零n维列向量x称为矩阵A的属于或对应于特征值m的特征向量,简称A的特征向量。
特征值是矩阵固有的, 由特征多项式唯一确定。而特征向量不唯一,特征向量来自齐次线性方程组的解,是齐次线性方程组的基础解系的非零线性组合,所以不唯一。
特征值跟特征向量之间什么关系
一个特征值只能有一个特征向量。不能对角化矩阵可对角化的条件是,有n个线性无关的特征向量。属于不同特征值的特征向量一定线性无关。相似矩阵有相同的特征多项式,因而有相同的特征值。n阶矩阵与对角矩阵相似的充分必要条件是,矩阵有n个线性无关的分别属于特征值1、2、3等的特征向量。
特征向量都是列向量吗
矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。
在线性代数中,列向量是一个 n乘1 的矩阵,即矩阵由一个含有n个元素的列所组成。列向量的转置是一个行向量,反之亦然。所有的列向量的集合形成一个向量空间,它是所有行向量集合的对偶空间。
单位列向量,即向量的长度为1,其向量所有元素的平方和为1。
特征向量的第一性质
特征向量的第一性质:线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量,特征向量对应的特征值是它所乘的那个缩放因子,特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量,线性变换的主特征向量是最大特征值对应的特征向量,特征值的几何重次是相应特征空间的维数,有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
施密特正交化与特征向量的问题
施密特正交化是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组出发,求得正交向量组,再将正交向量组中每个向量经过单位化,得到一个标准正交向量组,这种方法称为施密特正交化。
矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值。
归一化特征向量是什么意思
归一化特征向量:即为权向量,就是把特征向量里的各个值同除以其中的某一个值,一般除以最大值,即得到归一化特征向量。向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。